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Superdegenerate Point in FCC Phase Diagram: 
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We investigate the topology of the phase diagram of binary alloys on the fcc 
lattice with first-neighbor antiferromagnetic interactions around the super- 
degenerate point, where the L10 and L12 phases meet. We treat the system as 
a "hard-constraint lattice gas," following a procedure previously described by 
Lebowitz et al. We perform cluster variation method calculations in the T ~  0 
limit and Monte Carlo simulations directly at T= 0 K on the ground states of 
the superdegenerate point. We find that: (i) there is no disordered phase in the 
neighborhood of this point; (ii) a phase L' for which two of the four cubic sub- 
lattices have the same average occupancy and each of the two others are dif- 
ferent appears between L10 and L12; (iii) the transition L'/L12 is of first order. 

KEY WORDS: Ising model; superdegenerate ground states; cluster variation 
method; Monte Carlo simulations; constrained lattice gas. 

1. I N T R O D U C T I O N  

The phase  d i a g r a m  of b ina ry  al loys on  the fcc lat t ice with f i rs t -neighbor  
an t i fe r romagnet ic  in terac t ions  J has been great ly  s tudied in the last  decade  
(see refs. 1-11 and  references therein).  M o s t  of these studies have been 
main ly  concerned  with the par t i cu la r  p rob lem of the loca t ion  of the t r iple  
po in t  where the o rdered  L10 and  L12 phases and the d i sordered  one 
meet. The first M o n t e  Car lo  s imula t ions  by Binder e t  al. (1 3) loca ted  the 
t r iple  po in t  at  0 K,  in d i sagreement  with the preceding C V M  results of  
de F o n t a i n e  and  Kikuch i  (4) and  the la ter  results of Sanchez e t  al. (5~ 

Nevertheless ,  the value of  the t rans i t ion  t empera tu re  given by these C V M  
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studies depends on the degree of the approximat ion used. For  this reason, 
this question remained unsettled for a few years. Since the more recent 
work by Lebowitz et  al., (6) Gahn,  (7'8) Ackermann et  al., (91 and Diep et  

al. (1~ using Monte  Carlo simulations, and those by Finel and Ducastelle (m 
using CVM, the problem seems to have been solved: the triple point  is 
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Fig. 1. Phase diagram of the antiferromagnetic fcc lattice. (a) C - T  plane: CVM octahedron- 
tetrahedron (from ref. 11). (b) h-T  plane: (--) CVM octahedron-tetrahedron (from ref. 11): 
for clarity, low temperature features around h0 = 4J have been omitted (see Fig. 6b); (---) 
Monte Carlo (from ref. 1); ( - - )  Monte Carlo (from ref. 10). (c) h-T  plane: (--) mixed 
CVM (from ref. 13); ( - - - )  Monte Carlo (from re]'. 10). 
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located at finite temperature (even if there is a quantitative difference about 
its precise location: T t = 1.5J in CVM and T, = J in Monte Carlo). For a 
complete historical review of the controversy on this point, see ref. 12. 
These results are summarized on the phase diagram reported in Fig. 1. 
Finally, a CVM phase diagram has been derived, with a new refined 
approximation. (13) The resulting phase diagram is extremely close to the 
one obtained by Monte Carlo simulations (see Fig. lc). 

The aim of this paper is not to add one more study on this problem, 
but to investigate the topology of the phase diagram around the so-called 
"superdegenerate point" at T = 0  and h =4J ,  where the ordered Llo and 
L12 phases meet. It can be noted that another superdegenerate point is 
located at h-- 12J, but is less interesting and will not be discussed here. As 
pointed out by Lebowitz et a/., (6) neither the classical Monte Carlo method 
nor low-temperature expansions can unambiguously describe the phase 
diagram around a superdegenerate point. These authors have also shown 
that, in the limit T ~ 0, the problem can be translated in terms of a "con- 
strained lattice gas." Following this idea, we have performed CVM calcula- 
tions in the T ~  0 limit and Monte Carlo simulations directly on the 
ground states at h = 4 J .  Three conclusions may be derived from our 
calculations: 

(i) There is no disordered phase in the neighborhood of the super- 
degenerate point; this confirms that the triple point is located at 
finite temperature. 

(ii) The stability of the phase named L', first observed in mean-field 
calculations by Shockley (14) and also present in the CVM results 
of Finel and Ducastelle (m (see Fig. 1) is confirmed. 

(iii) The transition L'/L12 is of first order. 

2. GENERAL TOPICS 

We start with the Ising Hamiltonian 

H=J E ~,am-h ~ ~, (1) 
n , m  t~ 

where the first sum runs over the first-neighbor pairs and a,  = _ 1 stands 
for the usual spin variable. This Hamiltonian also describes binary alloys 
AcB1 c with repulsive interactions between atoms of the same species 
( J>0) ,  in which case ordered structures of CuAu (Llo) or Cu3Au (L12) 
type are expected (see Fig. 2). The magnetic field h is then equivalent to the 
difference between chemical potentials of species A and B and the resulting 
magnetization ( a ,  > to the difference between the local concentrations. 
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Fig. 2. Ordered structures involved in the phase diagram of Fig. 1. 

2.1. Ground States 

The ground states of this model have been previously investigated (see 
refs. 15 and 16 and references therein). They are most easily described in 
terms of tetrahedron configurations. In short, and except at h = 4 J  and 
h = 12J, the ground-state energy is obtained with spin configurations which 
use only one type of first-neighbor tetrahedron (see Fig. 3). 

More precisely, for 0 ~< h < 4J (by symmetry, it is sufficient to consider 
h ~> 0), the permitted tetrahedra are those of type AABB (two up spins and 
two down spins). There is an infinite number of configurations on the fcc 
lattice which satisfy this criterion: any configuration which consists of (100) 
planes, antiferromagnetically ordered within the plane but with no order 
between the planes, is authorized (the well-known Llo phase belongs to 
this category). The degeneracy of such a ground state is of order 2 L, where 
L is the number of (100) planes along one direction. Hence, the residual 
entropy per site vanishes. 

Similarly, for 4J<h < 12J, the permitted tetrahedra are those of type 
AAAB, and again this ground state is infinitely degenerate: any configura- 
tion with (100) planes alternatively ferromagnetic and antiferromagnetic, 
with no order between the antiferromagnetic planes, is permitted (the well- 

A A B B  A A A B  A A A A  h /J  
I I I 
0 4 12 

Fig. 3. First-neighbor tetrahedron involved in each h/J region of the phase diagram. 
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known L12 phase belongs to this category). As above, the one-dimensional 
character of this degeneracy leads to a vanishing entropy. 

The ground states at the superdegenerate points h = 4J and h = 12J 
are much more complex. At h=4J, the permitted tetrahedra are 
simultaneously those of type AABB and AAAB. The degeneracy of this 
ground state is so high that the residual entropy per site is finite. A lower 
bound of this entropy may easily be found as follows. The fcc lattice can 
be divided into four simple cubic sublattices; let two of these sublattices be 
occupied by A atoms, and one by B atoms. Any configuration obtained by 
randomly occupying the fourth sublattice is permitted. If N is the number 
of sites of the fcc lattice, there a r e  2 N/4 configurations of this type and there- 
fore the residual entropy per site is larger than �88 log 2. 

2.2. L o w - T e m p e r a t u r e  Phase D iagram 

The low-temperature phases of a system usually correspond to small 
perturbations of its ground states. This statement is made rigourous within 
the Pirogov and Sinai theory, (17~ together with Slawny's method, (18) under 
two restrictions: the number of ground states must be finite and a certain 
criterion of stability must be satisfied (Peierls condition). If these two con- 
ditions are satisfied, the phase diagram at sufficiently low temperature is a 
small perturbation of the zero-temperature one and free energies, and con- 
sequently, limits of phase stability can be exactly calculated using standard 
low-temperature expansions. 

These results have been recently extended to situations for which the 
ground-state degeneracy is infinite, but with no residual entropy. ~2~ 21) This 
is precisely the case here for h < 4J and 4 J <  h < 12J. The equilibrium states 
at low temperature correspond to small perturbations of the L1 o phase for 
h < 4J and of the L12 phase for 4 J <  h < 12J. 

The features of the phase diagram around the superdegenerate point 
h = 4J are much more subtle: as the residual entropy is finite, standard low- 
temperature expansions cannot be used (in fact, the first problem to solve 
is precisely the exact determination of this residual entropy). However, it is 
possible to map this point onto a certain "hard-constraint lattice gas 
model. ''(6) This mapping should permit a complete and detailed study of 
the phase diagram around the superdegenerate point. Our purpose is 
precisely to investigate numerically this mapping through two different 
methods, namely CVM calculations and Monte Carlo simulations. 
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2.3. Hard-Constra int  Lattice Gas 

According to the procedure described 
Hamiltonian (1) may be rewritten as 

by Lebowitz et aL, (6) the 

H = J  E anam-ho ~', a n - 6 h  2 a . = H o - 6 h  ~ a. 
n,m n n n 

where h0 = 4J, 6h = h -  ho, and H o is the Hamiltonian for h = h0. 
The partition function is then 

Z = ~ e Ho/kTz Z~ an~2 (2) 

where z = exp( - 26h/kT). 
If the temperature is low enough, the first sum runs only over the 

ground states of Ho, and Z may be rewritten 

Z(ho ,  z)  = Y~' z - Z ~  .~ 

where the zero of energy is adjusted so that Ho = 0 for a ground state. The 
prime recalls that the sum is restricted to the ground states of H o. This par- 
tition function can be related to another statistical problem which can be 
more conveniently described in the lattice gas language with the following 
variable change: 

Pn = (1 - Go)/2 

Hence, an = - 1 and an = + 1 correspond, respectively, to an occupied 
site (Pn = 1) and an empty site (Pn = 0). Then Z becomes 

Z(h0 ,  z) = Y~' z - z "  (1-  2~.>/2 

The upper sum runs over the N sites of the system. Thus 

Z(ho, z ) : z  -N/2 y '  z z~176 

52n Pn is the total number of occupied sites n in a particular configuration. 
So 

Z ( h o ,  z )  = z - N / 2  Z '  Zn 
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The problem of the limit T ~  0, h ~ h 0 of the initial partition function 
(2) is equivalent to a lattice gas problem if the quantity O = 6h/kT is kept 
constant. The approach to this limit is done along a ray ending at h0 with 
a slope O (see Fig. 4). In other words, the study of the phase diagram 
around ho can be restricted to the study of a lattice gas with an activity 
z = e x p ( - 2 0 ) .  At T =  0, the point h0 = 4J in the (h, T) plane is related to 
the segment �88 ~< c ~< �89 in the (C, T) plane, which corresponds to the varia- 
tions [ - 0 %  +oo]  for O and [oo,0]  forz.  

This statistical problem falls into the so-called "hard-constraint lattice- 
gas" type model. Here the constraint is the restriction on the occupation of 
each tetrahedron. In Sections 3 and 4 we develope the calculations perfor- 
med using the CVM and Monte Carlo method, respectively. First we 
present the results provided by the mean-field (Bragg-Williams) theory. 

2.4. Mean Field Analysis 

As shown elsewhere, ~11) a CVM analysis of the phase diagram around 
the superdegenerate point predicts the stability of a phase, named L' (see 
Fig. 2), between Llo and L12. In fact, this phase is also present in the 
classical mean field theory/14~ Within this last approximation, this is due to 
the fact that this is the only way to get a finite entropy at the super- 
degenerate point without increasing the ground-state energy. This can be 
shown as follows. 

As mentioned above, the permitted tetrahedra at the superdegenerate 
point h o = 4 J  have either one or two down spins. In mean field, the 
probability of observing any configuration on a tetrahedron is given 
by the product of the site probabilities. More precisely, if p(a~, am, %, %) 
is the probability that the tetrahedron nmpq has the configuration 
(Gn, O'm, ff p, O'q), then 

Fig. 4, The approach to the limit 

h o h 

h o = 4J, T =  0 is done along a ray of constant  slope O. 

822/61/1-2-9 
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where p(Gi) is the probability of observing ai at site i: 

p ( a j  = (1 + ai <a,))/2 

where <a~> is the statistical average of the spin variable a~. 
As a result, if one site of a given tetrahedron is disordered, i.e., 

<a~> # + 1, the three other sites must be perfectly ordered, with two up 
spins and one down spin, otherwise some forbidden tetrahedron configura- 
tions would have finite probabilities. In other words, in the limit where h 
and T approach the superdegenerate point, the 12 first neighbors of a dis- 
ordered site are necessarily ordered, i.e., <a~> = _+ 1; moreover, eight of 
those neighbors must be characterized by <ai> = + 1 and the four others 
by <a~> = - 1 .  But, up to that point, this observation is only a local rule 
that describes the first-neighbor configuration of a disordered site. In par- 
ticular, it does not say if these disordered sites do exist in the equilibrium 
state and, if so, where they sit in the lattice. For that purpose, we must con- 
sider the mean-field free energy at finite T around the superdegenerate 
point. 

In the mean-field approximation, the free energy of our model is 

F ( { < a ~ ) } ) = J  Z '  6nam -h E <an> 
n , m  n 

-kT~  l+2<an>log l+2<an>  + - 2  log 

where the first sum runs over first-neighbor pairs. The equilibrium state is 
obtained when the first derivatives of F{<ai>} vanish. As usual, these 
equations can be written 

<an>=tanhfl(h-J ~ <O'm> ) (3) 
m ~ n  

where the sum runs over the 12 first neighbors of site n. 
As suggested above, we continue the analysis of these equations, as 

h~ho=4J and T ~ 0 ,  along rays of constant slope O (see Fig. 4). The 
mean-field equations (3) become 

<o-,> = tanh(O + flh~ ~) (4) 

with 

h~=ho-J ~ <am> 
m # n  
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The term h~ ~ plays the role of an effective field which acts on site n. 
As we approach the superdegenerate point, two situations may occur: 
l i m ( a n ) =  +1  or l i m ( a , ) #  +1. 

1. l i m r ~ 0 ( a ~ > =  _+ 1. This is only possible if limflh~fr= + oe[see 
Eq. (4)]. Hence, we have, as T ~  0 along the ray of slope O, 

<an > ~ tanh flh,~fr ~ Sn[1 - 2 e x p ( -  2fl [ h,~fr[ )] (5) 

where S, is equal to the sign of h~ ff. 

2. l imr~ 0(an > # _+ 1. If a site n is disordered at zero temperature, its 
12 first neighbors m must be perfectly ordered at the superdegenerate point 
(see discussion above): (am> = + 1 for eight of them and (am)  = - 1 for 
the four others. More precisely, each of these (am)  must obey, in the limit 
T--* 0, a law given by Eq. (5). As a result, the effective field h n, fr.ls given by 

eft h~ ,.~2J ~ Smexp( -a f l  Ih~ffl) 
rn ~S n 

where the sum runs over the first neighbors of n. The effective fields h~ ff 
eft which act on these first neighbors correspond to the first case: flh m ~ + 

as T ~  0. Hence, flhCnfr~ 0 as T ~  0. Finally, the mean occupation ( a , >  of 
a disordered site approaches the finite value (tanh O) as 

<an) ~ t a n h  O + flh~ff(1 - tanh 2 O) (6) 

As a result, Eqs. (5)-(6) show that, as we approach the superdegenerate 
point along a ray of constant slope O, the difference between a mean 
occupation < a , )  and its limit value decreases exponentially as T ~ 0  
whether the site n is disordered or not. The same conclusion holds for the 
difference between the internal energy of any state which contains 
simultaneously ordered and disordered sites (provided the previous local 
rules are satisfied) and the ground-state energy at the superdegenerate 
point. However, and this is the key point, the entropy contribution of a site 
n depends drastically on whether n is disordered or not. If ( a , )  behaves 
as in Eq. (6), its entropy contribution to the free energy, is to the leading 
order, linear in T: 

k T s . ~ - k T ( t + t a n h 2  O l o g l + t a n h 2  O + l - t a n h 2  O l o g l - t a n h 2  0 )  

where (1 + tanh 0)/2 = C. is the concentration of a disordered site, whereas 
the entropy contribution is exponentially small when <an> behaves as in 
Eq. (5): 

kTs~,.~2 Ih~rfl exp(-2f l  ]h~ffl) 
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Thus, for any value of O, there is a temperature T(O) below which the 
entropy gain due to the substitution of an ordered site by a disordered one 
is larger than the increase of internal energy (if O ~ 0, the introduction of 
a disordered site necessarily increases the internal energy). Hence, the 
larger the number of disordered sites, the smaller the free energy. However, 
we cannot introduce more than one disordered site per tetrahedron. 
Consequently, the minimum energy is reached by any state which contains 
only tetrahedra of type + + - o ,  where the symbol "o" represents a 
disordered site. Very simple packing arguments show that there is an 
infinite number of such states, the simplest one being the L' phase (see 
Fig. 2). All the disordered sites are then on the same cubic sublattice. The 
other states can be obtained from L' by translating any set of parallel (t00) 
planes. 

To summarize, the mean-field analysis leads to the following conclu- 
sion: as we approach the superdegenerate point ho = 4J along a ray of con- 
stant slope O, the equilibrium state for sufficiently small T corresponds to 
the L' phase. This yields the phase diagram of Fig. 5. 

We recall that the key point which led us to this result is that, within 
the mean-field approximation, the 12 first neighbors of a disordered site are 
necessarily perfectly ordered, and that this fact is a direct consequence of 
the factorization of the tetrahedron probabilities into site probabilities. 

3. C V M  CALCULATIONS 

It has long been known that the CVM is a very precise technique for 
studying statistical problems on lattices, provided the basic clusters upon 
which the algorithm is built are large enough. Basically, a CVM study 
consists in minimizing a free energy functional where the exact entropy 

T 

Llo L12 

h 
o h 

Fig, 5. Phase diagram obtained by the mean-field approximation. When one approaches the 
limit h 0 = 4J, T =  0 along a ray of constant slope O, there always exists a temperature under 
which L' is the most  stable phase. 
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has been replaced by a linear combination of entropies of finite clusters 
included in a given basic cluster. Consequently, the configurational 
probabilities of this basic cluster and its subclusters directly enter the CVM 
free energy functional. 

Due to frustration effects with antiferromagnetic first-neighbor inter- 
actions, we know that the smallest basic cluster that leads to an overall 
correct phase diagram is precisely the first-neighbor tetrahedron. Within 
the tetrahedron (or a larger cluster) approximation, the tetrahedron 
probabilities are not factorized. Thus, contrary to the mean-field situation, 
two first-neighbor sites may be simultaneously disordered without increas- 
ing the ground-state energy. This is essential for our discussion, as now the 
stability of the L' phase is no longer the only way of getting the residual 
entropy at the superdegenerate point. In particular, the L' phase could 
disappear for the benefit of partially disordered Llo and L12. 

We first present the CVM results in the tetrahedron approximation. 
As above, we approach the superdegenerate point along rays of constant 
slope O. A special code has been derived to minimize the CVM free energy 
in the limit T ~ 0 .  Our results concerning the phase diagram are sum- 
marized in Fig. 1 and 6b. The first point is that the L' phase has disap- 
peared on the right of the superdegenerate point. More precisely, for 
O>Oc,  with Oc~-0 .33 ,  the equilibrium state corresponds to the par- 
tially disordered L I  2 phase. On the other hand, L' does exist on the left of 
the superdegenerate point. Indeed, for O < Oc, L' is more stable than the 
partially disordered Llo phase. In short, as O increases from - ~ to + ~ ,  
the equilibrium state in the limit T ~ 0  corresponds first to the L' phase 
and, through a first-order transition at O = 8c, switches to the partially 
disordered L12 phase. Concerning the transition L'/Llo, which must exist 
according to the low-temperature expansion that predicts the stability of 
Llo for h <ho at sufficient small T (see above), we have found a second- 
order transition. 

Finally, we present in Fig. 6a our CVM results concerning the residual 
entropy s(O), the limit concentration C(O), and the order parameters of L' 
and L12, as functions of 6~(T= 0). We mention first that each site of L' and 
L12 is partially disordered at T=  0 (in the mean-field analysis, only one of 
the cubic sublattices was disordered). Note the jump in the residual 
entropy, which marks the first-order transition at O = ~c. We report also 
in Fig. 6a the residual entropy of the metastable Llo phase in order to 
show that the difference from the entropy of the L' phase is very small. 
As expected, the residual entropy is maximum for O = 0, with 
s(O =0)=0.328 log 2. In the tetrahedron-octahedron approximation, we 
have found s(O = 0)=0.333 log 2/11) These results are in good agreement 
with the value 0.345 log 2 found in the Monte Carlo simulations of ref. 22. 
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Fig. 6. CVM results a round h o = 4J  as function of O. ( - - ) ,  Residual entropies s(O) for L1 o, 
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(1 + ( o i ) ) / 2  ]. (b) CVM phase diagram in the h-T plane. 
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To summarize, the L' phase is still present in the CVM analysis. 
However, its domain of stability is smaller than in the mean field 
approximation. Thus, we may argue that the stability of this phase could 
be an artefact of the approximate method used to analyze the equilibrium 
state around the superdegenerate point, and that L' would disappear with 
a higher-order approximation. This does not seem to be the case, as a 
CVM analysis in the tetrahedron-octahedron approximation leads to a 
larger domain of stability than in the tetrahedron one. (1I) However, even if 
this observation is a strong indication, it does not prove definitely the 
stability of L'. In fact, this phase has never been observed in Monte Carlo 
simulations. But we wish to comment upon two points. First, as the equi- 
librium states around the superdegenerate point are necessarily partially 
disordered, it is difficult, with standard Monte Carlo algorithms, to guess 
the symmetry of the equilibrium state through the observation of particular 
configurations, but accurate statistical averages on appropriate sublattices 
(here, the simple cubic ones) may give precise indications. Second, the dif- 
ferences of free energy between L' and L1 o are extremely small (as an 
example, for h = 3.75J and k T =  0.25J, the CVM free energies per site are 
fL' = --2.0131961J and fL10 = --2.0131945J). This difference is of the order 
of 10-6j.  Of course, the CVM is not expected to yield absolute free 
energies with such a high degree of accuracy; nevertheless, the difference is 
significant, each free energy being calculated with an accuracy better 
than 10- i~ 

For  these reasons, very tong Monte Carlo runs on large samples are 
necessary both to reach the true equilibrium states and to compute 
accurate statistical averages. Moreover, we are interested in the limit T ~ 0, 
i.e., in a regime where the relaxation process is very slow. In order to over- 
come these difficulties, a special Monte Carlo code running directly at 
T = 0  has been derived. The procedure and the results obtained are 
described in the next section. 

4. M O N T E  C A R L O  S I M U L A T I O N S  

In the lattice gas language, as already seen above, each tetrahedron of 
the fcc lattice should be in only one of the two following states: state 1 
when only one site is occupied and state 2 when two sites are occupied. The 
probability of modifying the occupation of a site is linked to the activity 
z = e x p ( - 2 0 ) .  Two cases have to be distinguished according to the value 
of z: 

(i) When z < 1, a vacant site surrounded by eight tetrahedra in state 
1 may be filled with probability z and an occupied site surrounded by eight 
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tetrahedra in state 2 must be emptied (the probability is 1/z > 1). A site of 
any other type cannot be modified. 

(ii) When z > 1, a vacant site surrounded by eight tetrahedra in state 
1 must be filled (the probability is z > 1) and an occupied site surrounded 
by eight tetrahedra in state 2 may be emptied with probability 1/z. A site 
of any other type cannot be modified. 

Therefore, the heart of the program consists in keeping up to date two 
files containing respectively the sites which must be emptied (or filled) and 
those which are only available to be filled (or empty). In that way, only 
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Fig. 7. Monte Carlo average occupancies of the four simple cubic sublattices as functions of 
O for L = 14. The calculations have been performed by starting from perfect L1 o (solid lines 
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the total average occupancy CT. (a) The increment of z between two points is 0.1. (b) The 
increment of z between two points is 0.02. 
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permitted configurations are visited. Consequently, the relaxation process 
toward the equilibrium state is much shorter than in classical Monte Carlo 
simulations. Moreover, the use of helicoidal boundary conditions along x 
and y axes and periodic ones along the z axis has made it possible to 
optimize the vectorization of the code. With the classical Metropolis algo- 
rithm, (23) the program runs at a rate of about 3 x 106 spin flips per second 
on a Cray X-MP supercomputer. Simulations have been made with lattice 
sizes from L = 14 to L = 34, L being the number of fcc cells along the three 
axes (the total number of sites is 4L3). Generally, for a given z, 5000 Monte 
Carlo steps per site (MCS) were executed. As less than 1000 MCS are 
sufficient to reach the equilibrium, the first 1000 MCS were discarded and 
the next 4000 were used to calculate the average occupancies Ci of the 
four cubic sublattices. At the end of each run, the last configuration was 
stored and used as a starting point for the next run with a new value of z. 

In Fig. 7a are shown the variations of Ci ( i=  1 4 )  and of the total 
occupancy C r =  (C1 + C2 + C3 + C4)/4 as a function of O obtained with 
L =  14. At first sight, a single transition occurs between L10 and L12. 
Figure 7b shows the results obtained more accurately with a smaller incre- 
ment of z, in the vicinity of the transition. This transition seems to be of 
first order on account of the sharp variations of the Ci, though no discon- 
tinuity appears on Cr. No disordered phase is present, which definitively 

Fig. 8. Temporal variations of the four sublattice occupancies ( El, [~], a ,  �9 ) with L = 14 
for different increasing values of O. A point is the average of 200 MCS, 5000 MCS being 
performed for each value of O. Note the sublattice switchings after the transition occurs. 
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solves the problem of the location of the triple point. A deeper analysis of 
the transition is prevented by the very large temporal fluctuations and sub- 
lattice switchings, as shown in Fig. 8. Hence, larger lattices have been used 
in order to reduce these effects. In Fig. 9 are presented the temporal fluc- 
tuations of Ci (i = 1-4) for L = 20. Note first the appearance of a hysteresis, 
which confirms that the transition is effectively of first order. On the other 
hand, the fluctuations are largely reduced compared to the preceding case, 
L = 14. We observe that the fluctuations are greater for the two sets of sub- 
lattices with Ci,-~0.7 and Ci~0.25 than for the others (Ci~0.1  and 
Ci~0 .9 )  and this is independent of the nature of the phase, L1 o or L12. 

Fig. 9. Same as Fig. 8, for L=20 (arrows show the sense of variation of O). Note the 
hysteresis between the two sets of results corresponding to increasing and decreasing values 
of O. 
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The fluctuations become weaker when the occupancy approaches the limits 
0 and 1. This can be understood with the following simple argument. 
Intuitively, one feels that the fluctuations on Ci are related to the con- 
flgurational entropy per site on the sublattice i, which may be expressed as 
s]k = - [C~log Ci+  (1 - C~) log(1 - Ci)] if a random distribution is 
assumed. The maximum of this function is obtained for C~ -- 0.5. Therefore, 
according to this crude approach, the fluctuations of C~ must increase when 
10.5-Cil  decreases, as observed. Moreover, it can be seen in Fig. 9 that 
the fluctuations are greater within the boundaries of the hysteresis than 
outside. In this region, sublattice switchings delimit what we shall call 
"bubbles" hereafter. Note that these bubbles are larger on the L10 side than 
on the L12 side. The occupancies of the two concentrated sublattices, 
say C3 and C4, are often well separated during a few thousand MCS. 
According to the mean-field and CVM results presented above, it is inviting 
to explain these features by the presence of the L' phase. If this hypothesis 
is correct, the sublattice switchings would be due to a size effect and should 
disappear in a sufficiently large lattice. On the other hand, it is also 
possible that these bubbles correspond to early signs of the transition and 
do not indicate the stability of any other phase. 

In order to study the size effect on this point, we have used lattices 
with L = 30 and L = 34. Results corresponding to L = 30 are reported in 
Fig. 10a. This size leads to new results which are not improved by the use 
of L = 34. The situation clearly appears different in the two branches of the 
hysteresis. On the Llo branch, bubbles between the two concentrated sub- 
lattices C3 and C4 are wider and wider and more extended when one 
approaches the transition and, just before, sublattice switchings vanish and 
show clearly the L' phase. Its stability has been checked by performing 
15,000 MCS during which neither transition nor sublattice switching was 
observed. We expect that the two sublattices would be separated sooner 
with much larger lattices. Nevertheless, computer time needed to do that 
seems too prohibitive in relation to the importance of the expected results. 
In particular, when one goes to the transition, the concentration difference 
iC3 - C4I continuously increases to become larger than the statistical error. 
This can be seen more precisely in Fig. 10b. 

In fact, I C 3 -  C41 would represent the order parameter t/i ~, of the phase 
L' if there were no sublattice switching. This means that L' exists in a 
region where the sublattices are not definitively split, ttL, can be roughly 
estimated as the average width of bubbles. This is plotted against O in 
Fig. 11. The important point is that ~/L, has a significant nonzero value out- 
side the hysteresis, which proves that L' is more stable than L1 o in a 
certain region O < Oc. Due to the statistical fluctuations, the limit of this 
region is difficult to determine within a Monte Carlo procedure. 
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Nevertheless, the good agreement with the CVM results on this point (see 
the comparison of t/L, by the two methods in Fig. 6a and Fig. 11) allows us 
to suppose that the overall CVM results are qualitatively trustworthy, in 
particular the prediction of the stability of L' phase against Llo in the 
whole domain O < Oc (see Section 3). In Fig. 11, the plot of Cr versus O 
shows a hysteresis, in complete agreement with the critical value 
Oc = -0.333 given by CVM calculations. The concentration width of the 
corresponding two-phase region is very small (~0.005), which is in 

Fig. 10. (a) Same as Fig. 9, for L = 30. The remarkable feature is the stable separation 
between the two concentrated sublattices in the upper part of the figure which shows the 
stabilization of the L' phase before the transition. (b) Enlargement of the upper part of part 
(a), which shows the increase in bubble size when one approaches the transition. 
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Fig. 10. (Continued) 

agreement with the Monte Carlo results by Diep et al., (1~ although the 
limit concentrations of this domain (0.387 ~< Cry< 0.392) are slightly smaller 
than theirs. Note that the CVM gives a larger domain (0.374 ~ C r  <~ 0.4t ). 
Nevertheless, the limits are different by less than 4 % from the Monte Carlo 
ones. The order parameter of the phase L12 is also plotted in Fig. 11. 
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Fig. 11. Monte Carlo results around the superdegenerate point h 0 = 4 J  as function of O. 
( 0 )  Total occupancy Cr(O ) starting from L10 side, (�9 total occupancy Cr(O ) starting 
from L12 side, (D, I )  order parameter of L12 and L'. 
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To summarize, CVM results presented in Section 3 are globally con- 
firmed by the Monte Carlo simulations. The agreement is particularly good 
for Oc and t/L,. The limit concentrations of the two-phase domain differ by 
less than 4 %, and the largest discrepancy concerns the order parameter of 
the L12 phase, which is ~0.7 in Monte Carlo and ~0.82 in CVM. 

5. C O N C L U S I O N  

The topology of the fcc phase diagram with first-neighbor anti- 
ferromagnetic interactions around the superdegenerate point h = 4 J  has 
been investigated by means of CVM and Monte Carlo calculations. The 
two methods lead to the same results. This shows once more the reliability 
of the CVM technique to study lattice statistics problems with short-range 
interactions. Our main conclusions are the following. First, there is no dis- 
ordered phase in the neighborhood of the superdegenerate point; this 
proves definitively that the triple point is located at finite temperature. 
Second, there is a first-order transition between L' and a partially disor- 
dered L12 phase. Concerning this last point, a very precise analysis has 
shown that the L' phase is more stable than Llo. This phase has been 
observed with Monte Carlo simulations for the first time. This observation 
requires the use of large lattices of more than 100,000 sites and at least 
5000 MCS. Nevertheless, it is not possible to determine precisely the 
domain of existence of this phase by Monte Carlo. On the other hand, 
owing to its analytical character, the CVM allows one to show that L' is 
always more stable than L10 at 0 K, the difference between the free energies 
being very small. To be complete, note that a partially disordered phase 
PD similar to the L' phase has been observed by Monte Carlo simulations 
in the triangular Ising model with nearest- and next-nearest-neighbor 
antiferromagnetic interactions (see ref. 24 and references therein). This 
phase appears between the 2 x 1 and 2 x 2 phases (similar to Llo and L12 
in this study) near the superdegenerate point h = 3J  I. 
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